metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N.N'$)cobalt(II)

Niloufar Akbarzadeh Torbati,^a Ali Reza Rezvani,^a* Nasser Safari,^b Vahid Amani^b and Hamid Reza Khavasi^b

^aDepartment of Chemistry, University of Sistan and Baluchestan, PO Box 98135-674, Zahedan, Iran, and ^bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran Correspondence e-mail: ali@hamoon.usb.ac.ir

Received 27 August 2010; accepted 3 September 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.044; wR factor = 0.139; data-to-parameter ratio = 18.6.

In the title compound, $[CoCl_2(C_{14}H_{12}N_2)]$, the Co^{II} atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand and two Cl atoms. The Co atom and the phenanthroline unit are located on a mirror plane. The methyl H atoms are disordered about the mirror plane and areeach half-occupied. In the crystal structure, $\pi - \pi$ interactions between the pyridine and benzene rings and between the pyridine rings [centroidcentroid distances = 3.8821(9) and 3.9502(10) Å, respectively] stabilize the structure.

Related literature

For related structures, see: Alizadeh et al. (2009); Buttery et al. (2006); Ding et al. (2006); Fanizzi et al. (1991); Lemoine et al. (2003); Preston & Kennard (1969); Robinson & Sinn (1975).

Experimental

Crystal data

$[CoCl_2(C_{14}H_{12}N_2)]$	V = 1480.0 (4) Å ³
$M_r = 338.09$	Z = 4
Orthorhombic, Pnma	Mo $K\alpha$ radiation
a = 11.2434 (12) Å	$\mu = 1.51 \text{ mm}^{-1}$
b = 7.441 (1) Å	T = 298 K
c = 17.690(3) Å	$0.50 \times 0.22 \times 0.20 \text{ mm}$

Data collection

Stoe IPDS-2 diffractometer	9742 measured reflections
Absorption correction: numerical	2124 independent reflections
(X-SHAPE and X-RED;	1871 reflections with $I > 2\sigma(I)$
Stoe & Cie, 2002)	$R_{\rm int} = 0.067$
$T_{\min} = 0.681, \ T_{\max} = 0.749$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	114 parameters
$wR(F^2) = 0.139$	H-atom parameters constrained
S = 1.20	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
2124 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

N1-Co1	2.046 (3)	Cl1-Co1	2.2030 (9)
N2-Co1	2.046 (3)		

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the University of Sistan and Baluchestan, and Shahid Beheshti University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2350).

References

- Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.
- Buttery, J. H. N., Effendy, Mutrofin, S., Plackett, N. C., Skelton, B. W., Whitaker, C. R. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1809-1828
- Ding, C.-F., Miao, Y.-F., Tian, B.-Q., Li, X.-M. & Zhang, S.-S. (2006). Acta Crvst. E62, m1062-m1063.
- Fanizzi, F. P., Intini, F. P., Maresca, L., Natile, G., Lanfranchi, M. & Tiripicchio, A. (1991). J. Chem. Soc. Dalton Trans. pp. 1007-1015.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lemoine, P., Viossat, B. & Daran, J.-C. (2003). Acta Cryst. E59, m17-m19.
- Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1956-1961.
- Robinson, W. T. & Sinn, E. (1975). J. Chem. Soc. Dalton Trans. pp. 726-731.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2010). E66, m1236 [doi:10.1107/S1600536810035531]

Dichlorido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)cobalt(II)

N. Akbarzadeh Torbati, A. R. Rezvani, N. Safari, V. Amani and H. R. Khavasi

Comment

2,9-Dimethyl-1,10-phenanthroline (dmphen) is a good bidentate ligand, and numerous complexes with dmphen have been prepared, such as those of mercury (Alizadeh *et al.*, 2009), zinc (Preston & Kennard, 1969), copper (Lemoine *et al.*, 2003), nickel (Ding *et al.*, 2006), gold (Robinson & Sinn, 1975), platinum (Fanizzi *et al.*, 1991) and lithium (Buttery *et al.*, 2006). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the Co^{II} atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from one dmphen ligand and two Cl atoms (Table 1). In the crystal structure, π - π interactions (Fig. 2) between the pyridyl and benzene rings, $Cg3\cdots Cg4^{i}$ and $Cg3\cdots Cg3^{ii}$ [symmetry codes: (i) -*x*, 1-*y*, 2-*z*; (ii) -*x*, -1/2+*y*, 2-*z*; where Cg3 and Cg4 are the centroids of the N2, C8–C11, C13 ring and C5–C8, C13–C14 ring], with centroid–centroid distances of 3.8821 (9) and 3.9502 (10) Å, stabilize the structure.

Experimental

For the preparation of the title compound, a solution of dmphen (0.42 g, 2.00 mmol) in methanol (20 ml) was added to a solution of $CoCl_2.6H_2O$ (0.48 g, 2.00 mmol) in methanol (20 ml) at room temperature. Crystals suitable for X-ray diffraction analysis were obtained by methanol diffusion into a blue solution of the title compound in DMSO after one week (yield: 0.50 g, 73.9%; m.p. > 573 K).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, 3/2-y, z.]

Fig. 2. Crystal packing diagram for the title compound.

F(000) = 684

 $\theta = 2.2-29.3^{\circ}$ $\mu = 1.51 \text{ mm}^{-1}$ T = 298 KBlock, blue

 $D_{\rm x} = 1.517 \ {\rm Mg \ m}^{-3}$

 $0.50 \times 0.22 \times 0.20 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 1670 reflections

Dichlorido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N$, N') cobalt(II)

$[CoCl_2(C_{14}H_{12}N_2)]$
$M_r = 338.09$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
<i>a</i> = 11.2434 (12) Å
<i>b</i> = 7.441 (1) Å
c = 17.690(3) Å
$V = 1480.0 (4) \text{ Å}^3$
Z = 4

Data collection

Stoe IPDS-2 diffractometer	2124 independent reflections
Radiation source: fine-focus sealed tube	1871 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.067$
rotation method scans	$\theta_{\text{max}} = 29.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: numerical (<i>X-SHAPE</i> and <i>X-RED</i> ; Stoe & Cie, 2002)	$h = -14 \rightarrow 15$
$T_{\min} = 0.681, \ T_{\max} = 0.749$	$k = -10 \rightarrow 10$
9742 measured reflections	$l = -15 \rightarrow 24$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2 methods Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.044$ sites $wR(F^2) = 0.139$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0692P)^2 + 0.4334P]$ S = 1.20where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ 2124 reflections $\Delta \rho_{\text{max}} = 0.51 \text{ e } \text{\AA}^{-3}$ 114 parameters $\Delta \rho_{min} = -0.55 \text{ e} \text{ Å}^{-3}$ 0 restraints

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.5096 (3)	0.7500	0.9952 (3)	0.0677 (12)	
H1A	0.4953	0.6880	0.9484	0.102*	0.50
H1B	0.5719	0.6904	1.0224	0.102*	0.50
H1C	0.5329	0.8716	0.9849	0.102*	0.50
C2	0.3980 (3)	0.7500	1.0417 (2)	0.0502 (8)	
C3	0.4022 (4)	0.7500	1.1208 (3)	0.0670 (12)	
Н3	0.4754	0.7500	1.1454	0.080*	
C4	0.3002 (4)	0.7500	1.1619 (2)	0.0661 (11)	
H4	0.3038	0.7500	1.2145	0.079*	
C5	0.1893 (3)	0.7500	1.1254 (2)	0.0470 (7)	
C6	0.0776 (4)	0.7500	1.1635 (2)	0.0599 (10)	
H6	0.0763	0.7500	1.2161	0.072*	
C7	-0.0259 (4)	0.7500	1.1254 (3)	0.0602 (10)	
H7	-0.0974	0.7500	1.1518	0.072*	
C8	-0.0270 (3)	0.7500	1.0444 (2)	0.0486 (8)	
C9	-0.1318 (3)	0.7500	1.0008 (3)	0.0648 (11)	
Н9	-0.2057	0.7500	1.0244	0.078*	
C10	-0.1246 (4)	0.7500	0.9245 (3)	0.0687 (12)	
H10	-0.1939	0.7500	0.8959	0.082*	
C11	-0.0128 (4)	0.7500	0.8877 (2)	0.0556 (9)	
C12	-0.0018 (5)	0.7500	0.8039 (3)	0.0775 (14)	
H12A	-0.0718	0.8026	0.7821	0.116*	0.50
H12B	0.0067	0.6287	0.7861	0.116*	0.50
H12C	0.0668	0.8187	0.7894	0.116*	0.50
C13	0.0806 (3)	0.7500	1.00504 (19)	0.0393 (6)	
C14	0.1911 (3)	0.7500	1.04563 (19)	0.0387 (6)	
N1	0.2938 (2)	0.7500	1.00521 (16)	0.0392 (5)	
N2	0.0873 (2)	0.7500	0.92773 (17)	0.0423 (6)	
Cl1	0.31373 (7)	0.49607 (9)	0.83732 (5)	0.0645 (2)	
Col	0.26015 (4)	0.7500	0.89154 (3)	0.04234 (18)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0351 (16)	0.082 (3)	0.086 (3)	0.000	0.0071 (19)	0.000
C2	0.0353 (14)	0.058 (2)	0.058 (2)	0.000	-0.0052 (14)	0.000
C3	0.050 (2)	0.093 (3)	0.058 (2)	0.000	-0.0196 (18)	0.000
C4	0.062 (2)	0.093 (3)	0.043 (2)	0.000	-0.0126 (18)	0.000
C5	0.0494 (18)	0.0531 (18)	0.0387 (16)	0.000	0.0011 (13)	0.000
C6	0.064 (2)	0.073 (2)	0.0425 (19)	0.000	0.0116 (17)	0.000
C7	0.0507 (19)	0.070 (2)	0.060 (2)	0.000	0.0188 (17)	0.000
C8	0.0363 (15)	0.0488 (17)	0.061 (2)	0.000	0.0026 (14)	0.000
C9	0.0357 (16)	0.070 (3)	0.088 (3)	0.000	-0.0046 (18)	0.000
C10	0.0415 (18)	0.075 (3)	0.089 (3)	0.000	-0.024 (2)	0.000

supplementary materials

C11	0.056 (2)	0.0505 (19)	0.061 (2)		0.000	-0.0229 (17)	0.000
C12	0.096 (4)	0.087 (3)	0.049 (2)		0.000	-0.033 (2)	0.000
C13	0.0353 (13)	0.0386 (13)	0.0441 (16)		0.000	-0.0016 (12)	0.000
C14	0.0353 (13)	0.0421 (14)	0.0388 (14)		0.000	-0.0013 (11)	0.000
N1	0.0331 (11)	0.0438 (13)	0.0409 (14)		0.000	-0.0001 (10)	0.000
N2	0.0413 (13)	0.0436 (13)	0.0420 (14)		0.000	-0.0063 (11)	0.000
Cl1	0.0738 (5)	0.0488 (4)	0.0707 (5)		0.0020 (3)	0.0176 (4)	-0.0121 (3)
Col	0.0470 (3)	0.0423 (3)	0.0378 (3)		0.000	0.00572 (17)	0.000
Geometric paran	notors (Å °)						
		1 500 (5)	C			1	409 (5)
CI = C2		1.500 (5)		S = C9		1.	.408 (5)
CI—HIA		0.9600	C9	→—C10		1.	.352 (8)
CI—HIB		0.9600	09	<i>і</i> —НУ	1	0.	.9300
CI—HIC		0.9600			1	1.	.416 (7)
C2—N1		1.337 (4)	CI	10—HI	0	0.	.9300
C2—C3		1.401 (6)	CI	II - N2	2	1.	.330 (4)
C3—C4		1.358 (7)	CI		2	1.	.487 (6)
С3—Н3		0.9300	CI	12—HI	2A	0.	.9600
C4—C5		1.405 (6)	CI	12—HI	2B	0.	.9600
C4—H4		0.9300	CI	12—HI	20	0.	.9600
C5—C14		1.411 (5)	CI	13 - N2		1.	.370 (4)
C5—C6		1.426 (5)	CI	13 - CI	4	1.	.434 (4)
C6—C7		1.345 (6)	CI	14—NI		1.	.359 (4)
С6—Н6		0.9300	NI	I—Col		2.	.046 (3)
C7—C8		1.433 (6)	N2	2—Col		2.	.046 (3)
С7—Н7		0.9300	Cl	1—Co		2.	.2030 (9)
C8—C13		1.396 (5)	Co	ol—Cli	l	2.	.2030 (9)
C2—C1—H1A		109.5	C9	9—C10	—C11	12	20.9 (4)
C2—C1—H1B		109.5	C9	9—C10	—H10	1	19.6
H1A—C1—H1B		109.5	C1	11—C1	0—H10	1	19.6
C2—C1—H1C		109.5	N2	2—C11	—C10	12	20.4 (4)
H1A—C1—H1C		109.5	N2	2—C11	—C12	1	17.4 (4)
H1B—C1—H1C		109.5	C1	10—C1	1—C12	12	22.2 (4)
N1-C2-C3		120.8 (4)	C1	11—C1	2—H12A	10	09.5
N1-C2-C1		117.9 (4)	C1	11—C1	2—H12B	10	09.5
C3—C2—C1		121.4 (4)	H1	12A—0	C12—H12B	10	09.5
C4—C3—C2		120.4 (4)	C1	11—C1	2—H12C	10	09.5
С4—С3—Н3		119.8	H1	12A—0	C12—H12C	1	09.5
С2—С3—Н3		119.8	H1	12B—C	C12—H12C	1	09.5
C3—C4—C5		120.2 (4)	N2	2—C13	C8	1.	23.0 (3)
С3—С4—Н4		119.9	N2	2—C13	C14	1	16.9 (3)
С5—С4—Н4		119.9	C8	3—C13	—C14	1.	20.1 (3)
C4—C5—C14		116.6 (3)	Nl	1—C14	—С5	12	22.6 (3)
C4—C5—C6		124.3 (4)	Nl	1—C14	—C13	1	18.2 (3)
C14—C5—C6		119.1 (3)	C5	5—C14	—C13	1	19.2 (3)
C7—C6—C5		121.6 (4)	C2	2—N1-	C14	1	19.4 (3)
С7—С6—Н6		119.2	C2	2—N1-	-Co1	12	29.5 (2)
С5—С6—Н6		119.2	C1	14—N1	—Co1	1	11.1 (2)

C6—C7—C8	120.6 (3)	C11—N2—C13	119.1 (3)
С6—С7—Н7	119.7	C11—N2—Co1	129.6 (3)
С8—С7—Н7	119.7	C13—N2—Co1	111.3 (2)
C13—C8—C9	116.9 (4)	N1—Co1—N2	82.44 (11)
C13—C8—C7	119.4 (3)	N1—Co1—Cl1	112.17 (4)
C9—C8—C7	123.7 (4)	N2—Co1—Cl1	113.31 (4)
С10—С9—С8	119.7 (4)	N1—Co1—Cl1 ⁱ	112.17 (4)
С10—С9—Н9	120.1	N2—Co1—Cl1 ⁱ	113.34 (4)
С8—С9—Н9	120.1	Cl1—Co1—Cl1 ⁱ	118.12 (5)
N1—C2—C3—C4	0.000 (3)	C1—C2—N1—C14	180.000(1)
C1—C2—C3—C4	180.000 (2)	C3—C2—N1—Co1	180.000(1)
C2—C3—C4—C5	0.000 (3)	C1—C2—N1—Co1	0.000 (2)
C3—C4—C5—C14	0.000 (2)	C5-C14-N1-C2	0.000 (2)
C3—C4—C5—C6	180.000 (2)	C13—C14—N1—C2	180.000(1)
C4—C5—C6—C7	180.000 (2)	C5-C14-N1-Co1	180.000(1)
C14—C5—C6—C7	0.000 (3)	C13-C14-N1-Co1	0.000(1)
C5—C6—C7—C8	0.000 (3)	C10-C11-N2-C13	0.000 (2)
C6—C7—C8—C13	0.000 (2)	C12-C11-N2-C13	180.000 (2)
C6—C7—C8—C9	180.000 (2)	C10-C11-N2-Co1	180.000(1)
C13—C8—C9—C10	0.000 (2)	C12-C11-N2-Co1	0.000(1)
C7—C8—C9—C10	180.000 (2)	C8—C13—N2—C11	0.000 (2)
C8—C9—C10—C11	0.000 (2)	C14—C13—N2—C11	180.000(1)
C9-C10-C11-N2	0.000 (2)	C8—C13—N2—Co1	180.000(1)
C9—C10—C11—C12	180.000 (2)	C14—C13—N2—Co1	0.000(1)
C9—C8—C13—N2	0.000 (2)	C2—N1—Co1—N2	180.000(1)
C7—C8—C13—N2	180.000 (2)	C14—N1—Co1—N2	0.000(1)
C9—C8—C13—C14	180.000(1)	C2—N1—Co1—Cl1	67.86 (4)
C7—C8—C13—C14	0.000 (2)	C14—N1—Co1—Cl1	-112.14 (4)
C4C5C14N1	0.000 (2)	C2—N1—Co1—Cl1 ⁱ	-67.82 (4)
C6-C5-C14-N1	180.000 (2)	C14—N1—Co1—Cl1 ⁱ	112.18 (4)
C4—C5—C14—C13	180.000 (2)	C11—N2—Co1—N1	180.000(1)
C6-C5-C14-C13	0.000 (2)	C13—N2—Co1—N1	0.000(1)
N2-C13-C14-N1	0.000 (2)	C11—N2—Co1—Cl1	-69.07 (5)
C8—C13—C14—N1	180.000(1)	C13—N2—Co1—Cl1	110.93 (5)
N2-C13-C14-C5	180.000 (2)	C11—N2—Co1—Cl1 ⁱ	69.07 (5)
C8—C13—C14—C5	0.000 (2)	C13—N2—Co1—Cl1 ⁱ	-110.93 (5)
C3—C2—N1—C14	0.000 (2)		
Symmetry codes: (i) x , $-y+3/2$, z .			

Fig. 1

